Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Minerva Obstet Gynecol ; 76(1): 80-88, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37162493

RESUMO

INTRODUCTION: The aim of this study was to analyze the usefulness of the principal embryological strategies to reduce time to pregnancy. EVIDENCE ACQUISITION: A systematic search of publications in the PubMed/MEDLINE, Embase and Scopus databases from inception to present including "IVF," "blastocyst," "embryo colture," "competent embryo," "time to pregnancy," "aneuploid," "euploid," "vitrification," "preimplantation genetic," "IVF strategies" and "embryo selection" alone or in combinations has been done. EVIDENCE SYNTHESIS: We have selected 230 articles and 9 of them have been included in this mini-review. CONCLUSIONS: Several embryological strategies aimed to select the most competent embryo and reduce time to pregnancy have been proposed, even if few publications on this specific topic are available. preimplantation genetic testing (PGT-A) represents the unique method able to assess the embryonic chromosomal status, but this does not mean that PGT-A is a reliable strategy to reduce time to pregnancy. There is no consensus on a specific method to reduce time to pregnancy, nevertheless this final goal could be probably reached through a harmonious combination of procedures. Thus, a reliable strategy to reduce time to pregnancy could be achieved when embryo culture, embryo cryopreservation and PGT-A are perfectly integrated and appropriately offered to selected patients.

2.
J Steroid Biochem Mol Biol ; 237: 106439, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38048918

RESUMO

Endometriosis was claimed to negatively affect the intrafollicular environment, hindering oocyte competence. Previous studies evaluated expression levels of cytochrome P450 aromatase (CYP19A) in granulosa and cumulus oophorus cells collected from endometriosis women, but results are controversial. To further investigate the intrafollicular environment whose alteration may potentially disturb ovarian steroidogenesis in endometriosis, gene expression of CYP19A and of its upstream enzymes, StAR and 3ßHSD was assessed in luteinized granulosa cells isolated from follicular fluids (FF) collected during Assisted Reproduction Technology (ART) procedures in women with stage III-IV disease and from subjects without the condition. In a subgroup of patients, cumulus oophorus cells (COCs) were also assessed for CYP19A, StAR and 3ßHSD gene expression. No difference in mRNA expression of CYP19A1, StAR and 3ßHSD in both granulosa cells and COCs was observed between the two groups of patients. No significant difference was also found between estradiol FF levels detected in endometriosis patients (median=873, IQR=522-1221 ng/ml)) and control patients (median=878, IQR=609-1137 ng/ml). To gain more insight into the intrafollicular regulation of CYP19A in patients with endometriosis, associations between expression of the analyzed genes, systemic and follicular 17ß-estradiol levels and ART outcomes were assessed. While in the control group, levels of CYP19A1, StAR and 3ßHSD transcripts significantly correlated with follicular estradiol levels (adjusted R² of 0.60), no significant association was detected in affected women (adjusted R² of 0.23). After stratification of the populations based on the presence of the disease, CYP19A1 expression was shown to correlate with the number of oocytes retrieved [ß:- 1.214;95%CI: - 2.085 - (-0.343); p = 0.007] in the control group while this association was not present in patients with endometriosis [ß:- 0.003; 95%CI:- 0.468-0.461; p = 0.988)]. These results do not support data from the literature indicating a reduced aromatase expression in granulosa cells of affected women, but they highlight a potential subtle mechanism affecting the ovulation process in these women.


Assuntos
Endometriose , Estradiol , Humanos , Feminino , Estradiol/metabolismo , Aromatase/genética , Aromatase/metabolismo , Endometriose/genética , Endometriose/metabolismo , Células da Granulosa/metabolismo , Líquido Folicular/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Expressão Gênica
3.
Hum Reprod ; 36(1): 130-144, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33305818

RESUMO

STUDY QUESTION: Does oral Vitamin D supplementation alter the hormonal milieu of follicular fluid (FF) and the transcriptomic profile of luteinised granulosa cells (GCs) in women with Vitamin D deficiency undergoing IVF? SUMMARY ANSWER: A transcriptomic signature relevant to oral Vitamin D supplementation in luteinised GCs was demonstrated, although Vitamin D supplementation did not alter hormone levels in FF. WHAT IS KNOWN ALREADY: Vitamin D deficiency is linked to lower live birth rates among women undergoing IVF. It is unclear whether Vitamin D elicits a targeted action in reproductive physiology or is a surrogate marker of overall well-being. Several in-vitro studies, but none in vivo, have examined the impact of Vitamin D on the periovulatory follicle, focusing on GCs as a proxy marker of oocyte competence. STUDY DESIGN, SIZE, DURATION: We present a report of secondary outcomes from the SUNDRO clinical trial, which was launched in 2016 to determine whether Vitamin D supplementation can improve the IVF outcomes of women who are deficient in Vitamin D (<30 ng/ml). FF samples of 145 women who were randomised to receive Vitamin D or placebo from March 2017 to January 2019 were collected. All follicles that were aspirated in our study measured ≥11 mm on the day of hCG trigger. The first cohort of samples was collected from the dominant follicle of each participant and utilised for hormone profiling (n = 50 Vitamin D, n = 45 Placebo). For the second cohort, the follicle aspirates of each participant were pooled to create a single FF sample, which was used for the isolation of GCs for gene expression studies (n = 20 Vitamin D, n = 30 placebo). Six of the samples from the second cohort were used for RNA-sequencing analysis (n = 3 Vitamin D, n = 3 placebo). PARTICIPANTS/MATERIALS, SETTING, METHODS: Two academic infertility units were involved in the recruitment of the participants, who received a single dose of oral 25-hydroxyvitamin D (600 000 IU) or placebo, 2-12 weeks before oocyte retrieval. Women in both groups were deficient in Vitamin D, aged 18-39 years with a normal BMI (18-25 kg/m2) and <3 previous IVF cycles. The FF was aspirated at the time of oocyte retrieval and stored. Liquid chromatography tandem mass spectrometry was used to measure FF abundance of 25-hydroxyvitamin D, aldosterone, androstenedione, cortisol, cortisone, corticosterone, 11-deoxycorticosterone, 11-deoxycortisol, 21-deoxycortisol, dehydroepiandrosterone, dehydroepiandrosterone sulfate, dihydrotestosterone, oestradiol (E2), 17-OH-hydroxyprogesterone, progesterone (P4) and testosterone. GCs were isolated from pooled FFs and the transcriptome was evaluated by RNA-sequencing and RT-PCR. Ingenuity pathway analysis (IPA) was used to assess the top canonical pathways and upstream regulators mediating the action of Vitamin D. MAIN RESULTS AND THE ROLE OF CHANCE: At oocyte retrieval, FF concentration of 25-hydroxyvitamin D was 2.8-fold higher (P < 0.001) in the Vitamin D group (39.5 ng/ml; n = 50) compared to placebo (13.8 ng/ml; n = 45) but no other hormonal differences were detected. In the placebo group, but not the Vitamin D group, weak correlations of 25-hydroxyvitamin D concentration with P4 (r = 0.31, P = 0.03) and E2 (r = 0.45, P = 0.002) were observed. RNA-sequencing identified 44 differentially expressed genes in the GCs of patients who received Vitamin D (n = 3) compared to placebo (n = 3). RT-PCR demonstrated upregulation of VDR (vitamin D receptor), GSTA3 (glutathione S-transferase A3) and IL21R (interleukin 21 receptor), and downregulation of P T GS2 (prostaglandin-endoperoxide synthase 2), KLF4 (kruppel-like factor 4), T RP C4 (transient receptor potential cation channel subfamily C member 4), VEGF (vascular endothelial growth factor), RXRB (retinoid X receptor beta) and AGER (advanced glycosylation end-product specific receptor) genes in the Vitamin D (n = 17) versus placebo (n = 27) group. IPA suggested roles of Vitamin D in antioxidant defence. LIMITATIONS, REASONS FOR CAUTION: Interpretation of the data is influenced by our intervention strategy (2-12 weeks prior to retrieval). As folliculogenesis may last 5-6 months, our protocol can only examine with confidence the impact of Vitamin D on the final stages of follicular growth. Furthermore, we examined the hormonal profile of the dominant follicle only, while the GC data reflect the transcriptome of all (pooled) follicles large enough to be used for IVF. Luteinised GCs from controlled ovarian stimulation were used in this study, which may be functionally distinct from the GCs of developing follicles. Moreover, the sample size for RNA-sequencing analysis was low (n = 3 per group), regardless of validation by RT-PCR that was performed on a larger cohort, introducing complexity to the IPA analysis, which required an input of data with P-adjusted <0.08 instead of <0.05 to be informative. WIDER IMPLICATIONS OF THE FINDINGS: This is the first in-vivo study to show that Vitamin D supplementation alters gene expression in luteinised GCs. In contrast to some in-vitro evidence, no effect of the intervention on expression of genes encoding steroidogenic enzymes was observed. Unlike other studies, our results suggest that supplementation with Vitamin D is unlikely to directly influence hormone availability in FF. Our findings instead reinforce the hypothesis that Vitamin D could be considered one of the gatekeepers in protecting against an exaggerated response to ovarian stimulation. STUDY FUNDING/COMPETING INTEREST(S): The study has been funded by the Italian Ministry of Health (RF-2013-02358757) following peer review in the competitive 'Bando di Ricerca Finalizzata e Giovani Ricercatori 2013' for the clinical trial SUNDRO (EudraCT registration number 2015-004233-27). There are no competing interests. TRIAL REGISTRATION NUMBER: EudraCT registration number 2015-004233-27.


Assuntos
Células da Granulosa , Fator A de Crescimento do Endotélio Vascular , Adolescente , Adulto , Suplementos Nutricionais , Feminino , Fertilização In Vitro , Expressão Gênica , Humanos , Fator 4 Semelhante a Kruppel , Indução da Ovulação , Vitamina D , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...